91 research outputs found

    What laboratory experiments can teach us about cosmology: A chameleon example

    Get PDF
    Laboratory experiments can shed light on theories of new physics introduced in order to explain cosmological mysteries, including the nature of dark energy and dark matter. In this article I will focus on one particular example of this, the chameleon model. The chameleon is an example of a theory which could modify gravity on cosmological distance scales, but its non-linear behavior means that it can also be tested with suitably designed laboratory experiments. The aim of this overview is to present recent theoretical developments to the experimental community.Comment: 5 pages, 2 figures. To appear in the Proceedings of the International Workshop on Particle Physics at Neutron Sources PPNS 2018, Grenoble, France, May 24-26, 201

    Explaining the proton radius puzzle with disformal scalars

    Get PDF
    We analyze the consequences of a disformal interaction between a massless scalar and matter particles in the context of atomic physics. We focus on the displacement of the atomic energy levels that it induces, and in particular the change in the Lamb shift between the 2s and 2p states. We find that the correction to the Lamb shift depends on the mass of the fermion orbiting around the nucleus, implying a larger effect for muonic atoms. Taking the cutoff scale describing the effective scalar field theory close to the QCD scale, we find that the disformal interaction can account for the observed difference in the proton radius of muonic versus electronic hydrogen. Explaining the proton radius puzzle is only possible when the scalar field is embedded in nonlinear theories which alleviate constraints from collider and stellar physics. Short distance properties of the Galileon where nonperturbative effects in vacuum are present ensure that unitarity is preserved in high-energy particle collisions. In matter, the chameleon mechanism alleviates the constraints on disformal interactions coming from the burning rates for stellar objects. We show how to combine these two properties in a single model which renders the proposed explanation of the proton radius puzzle viable

    Screening of scalar fields in Dirac-Born-Infeld theory

    Get PDF
    We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, nonlinearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Unlike generic P(X) or chameleon theories, screening happens within the regime of validity of the effective field theory thanks to the DBI symmetry. We derive an exact form for the field profile around multiple sources and determine the constraints on the theory parameters from tests of gravity. Perturbations around the spherically-symmetric background propagate superluminally, but we argue for a chronology protection analogous to Galileons. This is the first example of a screening mechanism for which quantum corrections to the theory are under control and exact solutions to cosmological N-body problems can be found

    Constraining disformally coupled scalar fields

    Get PDF
    Light scalar fields can naturally couple disformally to matter fields. Static, nonrelativistic sources do not generate a classical field profile for a disformally coupled scalar, and so such scalars are free from the constraints on the existence of fifth forces that are so restrictive for conformally coupled scalars. In this paper we show that disformally coupled scalars can still be studied and constrained through their microscopic interactions with fermions and photons, both in terrestrial laboratories and from observations of stars. The strongest constraint on the coupling scale comes from mono-photon searches at the LHC and requires M≳102 GeV

    Screening fifth forces in k-essence and DBI models

    Full text link
    New fifth forces have not yet been detected in the laboratory or in the solar system, hence it is typically difficult to introduce new light scalar fields that would mediate such forces. In recent years it has been shown that a number of non-linear scalar field theories allow for a dynamical mechanism, such as the Vainshtein and chameleon ones, that suppresses the strength of the scalar fifth force in experimental environments. This is known as screening, however it is unclear how common screening is within non-linear scalar field theories. k-essence models are commonly studied examples of non-linear models, with DBI as the best motivated example, and so we ask whether these non-linearities are able to screen a scalar fifth force. We find that a Vainshtein-like screening mechanism exists for such models although with limited applicability. For instance, we cannot find a screening mechanism for DBI models. On the other hand, we construct a large class of k-essence models which lead to the acceleration of the Universe in the recent past for which the fifth force mediated by the scalar can be screened.Comment: 26 page

    Cosmological Tests of the Disformal Coupling to Radiation

    Full text link
    Light scalar fields can naturally couple disformally to Standard Model fields without giving rise to the unacceptably large fifth forces usually associated with light scalars. We show that these scalar fields can still be studied and constrained through their interaction with photons, and focus particularly on changes to the Cosmic Microwave Background spectral distortions and violations of the distance duality relation. We then specialise our constraints to scalars which could play the role of axionic quintessence

    Using atom interferometry to detect dark energy

    Get PDF
    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory
    • …
    corecore